Arithmetic of Free Group Character Varieties

Samuel Cavazos, Dr. Sean Lawton

Department of Mathematics

Abstract

A \mathbb{K} -variety $X_{\mathbb{K}}$ is a set whose points are the solutions to a set of polynomial equations over a field \mathbb{K} . When $\mathbb{K} = \mathbb{Z}_p$, prime, the counting polynomial $\mathcal{C}_X(p) = |X_{\mathbb{Z}}|$. If $\lim_{p \to 1} \mathcal{C}_X(p) = \chi(X_{\mathbb{C}})$, denotes where the Euler Characteristic of the variety X over \mathbb{C} , then the variety is said to be of type polynomial count. In 2008, Hausel and Rodriguez-Villegas showed $Hom(\pi_1(\Sigma)^*, SL(n, \mathbb{C})/SL(n, \mathbb{C})$ is of type polynomial count, where Σ is a closed surface. In 2012 we found that $Hom(\pi_1(\Sigma), SL(2, \mathbb{C})/SL(2, \mathbb{C})$ is not of type polynomial count, where Σ is an open surface.

Terminology.

• Free Group: A group with no relations between its generators other than those imposed by the group axioms. The rank of a group is the natural number r which corresponds to the number of generators. For example,

 $F_3 = \langle x_1, x_2, x_3 \rangle$ denotes a rank 3 free group.

- $SL(n, \mathbb{Z}_p)$: The group of $n \times n$ unit determinant matrices over \mathbb{Z}_p .
- $\pi_1(\Sigma)^*$: Here, $\pi_1(\Sigma)$ denotes the fundamental group of the surface Σ , and $\pi_1(\Sigma)^*$ is a central extension of the fundamental group.
- Representation of a Free Group: A homomorphism from F_r to $SL(n,\mathbb{Z}_p)$.

 $Hom(F_2, SL(2, \mathbb{F})), \mathbb{F}$ a Finite Field.

Examples

Let Γ be a surface homeomorphic (can be continuously deformed) to a sphere. Then $\chi(\Gamma)=2$.

Methods

Using the fact that

$$Hom(F_r, SL(2, \mathbb{Z}_p)) \approx SL(2, \mathbb{Z}_p)^{\times r}$$
, we wrote a program in Mathematica to see $SL(2, \mathbb{Z}_p)^{\times r}$ for any given p and r . We then divided the set

$$X_{SL(2,\mathbb{Z}_p)}(r) := SL(2,\mathbb{Z}_p)^{\times r}/SL(2,\mathbb{Z}_p)$$

into conjugate invariant strata; i.e. we partitioned $X_{SL(2,\mathbb{Z}_p)}(r)$ into sets with fixed stabilizer type. We found that for any given p and r, there are 5 strata (which may be empty) and conjectured a formula to count the number of orbits in each strata in terms of p and r. We then proved that

$$\left| \mathbb{X}_{SL(2,\mathbb{Z}_p)}(r) \right| = \sum_{i=1}^5 |\mathcal{R}_I / SL(2,\mathbb{Z}_p)|,$$

Where \mathcal{R}_i denotes the i^{th} strata, and used the counts for each \mathcal{R}_i to find $\mathcal{C}_r(p)$.

 $Hom(F_2,SL(2,\mathbb{F}))$, \mathbb{F} an Infinite Field.

As the size of the field increases, the number of points increases as well.

Results

We found that the counting polynomial $\mathcal{C}_r(p)$ for $\mathbb{X}_{SL(2,\mathbb{Z}_p)}(r)$ for $r\geq 2$ is given by

$$C_r(p) = 2p^{r-1}[(p^2 - 1) + 2^r] + \frac{1}{2}(p-1)[p-1)^{r-2}(p-3) + (p+1)^{r+1}].$$

As a result, we found that

$$\lim_{p\to 1} \mathcal{C}_r(p) = 8 \cdot \chi(X_{SL(2,\mathbb{Z}_p)}(r)),$$

Which we found by comparing our result to the known result of $\chi\left(\mathbb{X}_{SL(2,\mathbb{Z}_p)}(r)\right)^1$.

Hence, since

$$\lim_{p\to 1} \mathcal{C}_X(p) \neq \chi(X_{\mathbb{C}}),$$

we conclude that

 $Hom(\pi_1(\Sigma), SL(2, \mathbb{C})/SL(2, \mathbb{C})$

is not of type polynomial count.

References

- 1. The Topology of moduli spaces of free group representations, Sean Lawton and Carlos Florentino, 2009, Mathematische Annalen vol. 345.
- 2. Mixed Hodge Polynomials of Character Varieties, Tamàs Hausel and Fernando Rodriguez-Villegas, 2008, Inventiones Mathematicae vol. 174.

